Güç Analizi


Bu dersimizde istatistikte kullanılan güç testleri R programında nasıl yapıldığını göreceğiz. Elbette ki R programına geçmeden önce biraz güç testinden ve hipoztez testlerinden bahsedeceğiz ve sonrasında güç testini yapmak için “pwr” paketini inceleyeceğiz.

İstatistiksel hesaplamalar sonucu karar verdikten sonra bu kararın doğruluğu ve güvenilirliği ölçmek için kullanılmaktadır. Konuyu daha iyi pekiştirebilmek için biraz hipotez testlerinden bahsedelim ve sonunda güç testiyle bağlayalım.

Hipotez testi genel olarak bir konu üzerinde doğruluğu deney yada testlerle ispat edilmeye çalışılan öngörülerdir şeklinde tanımlanabilir. Hipotez testini belirli aşamalardan sonra belirleyebiliriz.

 

·         Hipotezlerin oluşturulması nasıl yapacağım?

·         Anlam düzeyinin (α) belirlenmesi

·         Örnekleme dağılımının belirlenmesi

·         Ret alanının ve kritik değerin belirlenmesi

·         Karşılaştırmalar, sonuç ve yorum

 

Hipotez testinde iki tane seçeneğimiz vardır bunlar H1 ve H0 hipotezleridir. H0 hipotezi ana kitle üzerinde yapılan bazı istatistiksel işlemlerin ana kitle üzerinde herhangi bir değişikliğe meydan vermeyeceğini savunmaktadır.H0 hipotezi aynı zamanda yokluk hipotezi ya da null hipotez olarak da adlandırılmaktadır. Tabi bu savunmalar için bazı yanılma payları bulunmaktadır (%95,%99..vb). H1 hipotezi de tahmin edeceğiniz gibi karşıt görüşü savunmaktadır.

Tabi burada karşılaşabilecek bazı durumlar vardır bu durumlar tablo üzerinde özetlenirse;

 

H0 doğru

H0 yanlış

H0 reddedilemez

Doğru karar

II. tip hata β

H0 red

I. tip hata α

Doğru karar

 

Yukarıdaki tabloda satırlar karar sürecini temsil etmektedir. Yapılan testler sonucu yukarıdaki tablodan durum değerlendirilir.

Test gücü ise 1 – β olarak belirlenir ve genelde 0.80’den yukarı olması beklenir. Şimdi R programında power analizi nasıl yapıldığına bakalım. R programında bu analiz “pwr” paketiyle yapılabilmektedir. Bu paket içerisindeki fonksiyonları inceleyelim;

Fonksiyon                           Güç Analizi

pwr.2p.test                        iki boyutlu eşit n değeri

pwr.2p2n.test                   iki boyutlu eşit olmayan n değeri

pwr.anova.test                                dengeli tek yönlü ANOVA

pwr.chisq.test                  Ki – Kare Testi

pwr.f2.test                         Lineer Model

pwr.p.test                          Tek örneklemli

pwr.r.test                           Korelasyon

pwr.t.test                           t-tests

pwr.t2n.test                      t-test (iki örneklem ve eşit olmayan n değeri)

 

t – Test

Bu test için aşağıdaki fonksiyon kullanılır;

pwr.t.test(n = , d = , sig.level = , power = , type = c("two.sample", "one.sample", "paired"))

“n” örneklem büyüklüğü, “d” etki büyüklüğü, “sig.level” önem seviyesi değerlerini ifade etmektedir. Eğer n sayısı eşit değilse;

pwr.t2n.test(n1 = , n2= , d = , sig.level =, power = )

yukarıdaki fonksiyon kullanılmaktadır.

Anova

Tek yönlü anova için;

pwr.anova.test(k = , n = , f = , sig.level = , power = )

komutu kullanılmaktadır. “k” group sayısını ve “n”  örneklem sayısını, “f” etki büyüklüğünü, “power” 1 – II. Tip Hata yı temsil etmektedir.

ÖRNEK – I

pwr.anova.test(f=0.28,k=4,n=20,sig.level=0.05)

 

Balanced one-way analysis of variance power calculation

k = 4

n = 20

f = 0.28

sig.level = 0.05

power = 0.5149793

NOTE: n is number in each group

Korelasyon

Korelasyon için şu komutlar kullanılır;

pwr.r.test(n = NULL, r = NULL, sig.level = 0.05, power = NULL,alternative = c("two.sided", "less","greater"))

 

“n”  gözlem değerini, “r” lineer korelasyon katsayısını temsil etmektedir.

ÖRNEK – I

pwr.r.test(r=0.3,n=50,sig.level=0.05,alternative="two.sided")

approximate correlation power calculation (arctangh transformation)

n = 50

r = 0.3

sig.level = 0.05

power = 0.5715558

alternative = two.sided

Lineer Modeller

Gerekli komut dizini aşağıdaki gibidir;

pwr.f2.test(u = NULL, v = NULL, f2 = NULL, sig.level = 0.05, power = NULL)

“u” numerator için serbestlik derecesini, “v” denominator için serbestlik derecesini, “f2” etki büyüklüğünü temsil etmektedir.

Ki – Kare Testi

Ki – Kare testi için aşağıdaki fonksiyon kullanılmaktadır;

pwr.chisq.test(w =, N = , df = , sig.level =, power = )

“w” etki büyüklüğünü, “N” gözlem sayısını, “df” serbestlik derecesini göstermektedir.

ÖRNEK – I

pwr.chisq.test(w=0.346,df=(2-1)*(3-1),N=140,sig.level=0.01)

Chi squared power calculation

w = 0.346

N = 140

df = 2

sig.level = 0.01

power = 0.8854053

NOTE: N is the number of observations

 

Soru ve önerilerinizi facebook sayfamızdan yapabilirsiniz. Sayfamızı beğenmeyi unutmayınız…

 

 

 

KAYNAK

http://biyoinformatiktr.blogspot.com.tr/2013/04/testin-gucu-power-test.html

https://tr.wikipedia.org/wiki/Hipotez_testi#Hipotez_testinin_a.C5.9Famalar.C4.B1

https://cran.r-project.org/web/packages/pwr/pwr.pdf

http://www.statmethods.net/stats/power.html

 

 

Yazar Kimdir?

Sıtkı Cansu, 19 Ekim 1985 yilinda Konya-Beyşehir'de dogmustur.İlk, orta ve liseyi Beyşehir'de bitirmis olup Konya-Ereğli Selçuk MYO Bilgisayar programcılığı ve Mugla Sıtkı Koçman Üniversitesi İstatistik bölümünden mezun olmustur. Çesitli yerlerde web tasarımcı ve veri tabani yöneticisi olarak çalışan yazar, son üç senedir ingilizce öğretmenliği yapmaktadir. Şu anda yüksek lisansını tamamlamak üzere Mugla Üniversitesinde öğrenim görmektedir.